Clarke Generalized Jacobian of the Projection onto Symmetric Cones
نویسندگان
چکیده
This paper focuses on Clarke generalized Jacobian of the projection onto symmetric cones. First, we recall some basic concepts. Let ̥ : Ω ⊆ X → Y be a locally Lipschitz function on an open set Ω, where X and Y are two finite dimensional inner product spaces over the field R. Let ∇̥(x) denote the derivative of ̥ at x if ̥ is differentiable at x. The Clarke generalized Jacobian of ̥ at x is defined by ∂̥(x) := conv{∂B̥(x)}, where ∂B̥(x) := {limx̄→x,x̄∈D̥ ∇̥(x̄)} is the B-subdifferential of ̥ at x, and D̥ is the set of points of Ω where ̥ is differentiable. We assume that the reader is familiar with the concepts of (strong) semismoothness, and refer to [4, 5, 14, 15, 16] for details.
منابع مشابه
Clarke Generalized Jacobian of the Projection onto Symmetric Cones and Its Applications
In this paper, we give an exact expression for Clarke generalized Jacobian of the projection onto symmetric cones, which is linked to rank-1 matrices. As an application, we employ the projection operator to design a semismooth Newton algorithm for solving nonlinear symmetric cone programs. The algorithm is proved to be locally quadratically convergent without assuming strict complementarity of ...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملMolecular Simulation of Hydrogen Adsorption onto Single-Walled Carbon and Boron-Nitride Nano-Cones
In this paper, we have studied the hydrogen adsorption onto CNCs and BNNCs nano-cones using GCMC simulations. The effects of length and cone apex angle on adsorption property have been investigated. Our results show that with increasing the pressure and decreasing the cone length and cone apex angle except for CNC-300˚, the hydrogen adsorption onto the BNNCs and CNCs was increased. It was also ...
متن کاملGeneralized Monotone
Recent characterizations of various types of diierentiable generalized monotone maps by Karamardian{ Schaible{Crouzeix and their strengthened versions by Crouzeix{Ferland are extended to the nonsmooth case. For nondiierentiable locally Lipschitz maps necessary and/or suucient conditions for quasimono-tonicity, pseudomonotonicity and strict/ strong pseudomonotonicity are derived. To accomplish t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008